If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-270=0
a = 1; b = -6; c = -270;
Δ = b2-4ac
Δ = -62-4·1·(-270)
Δ = 1116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1116}=\sqrt{36*31}=\sqrt{36}*\sqrt{31}=6\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{31}}{2*1}=\frac{6-6\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{31}}{2*1}=\frac{6+6\sqrt{31}}{2} $
| Bx4=24 | | -15/20/x=-5/7 | | 5x-3=7x-11. | | -x+8=9x-2 | | 0.7^(x)=0.1 | | 2*3,14x^2+2*3,14x-5,3=0 | | 7x+9-3x-1=2-x | | 96=22+7x | | -2x-144=-3x+10+12x | | 3*√x+7=13 | | 3(√x+7)=13 | | 3^(5x+2)=10 | | x+46=-3x-6 | | 3.√x+7=13 | | 12g-51=-9 | | 3^5x+2=10 | | 13t+61=9 | | 2x-(4x-x)=10 | | X3+3x2+2x-2184=0 | | 30-2x+5x-20=20 | | 10+10x=35+x | | 8x^2-(2x+3)(4x-1)=1 | | 2x+7x-40=32 | | 7−x2=−8 | | 3/x+1=5/2 | | 2*3,14*x*0,8+2*3,14*x^2=4,5 | | (9)/(x^2+3x)-(1)/(x)=(2)/(x+3) | | x-6/8x=16 | | 7m-4(m+6)=7(m-8)+8 | | 38x+0.11=49x+0.07 | | 2/3x+4/3=-2/4 | | 3(2+5x)=51x |